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Abstract— Mobile robot olfaction systems combine gas sen-
sors with mobility provided by robots. They relief humans
of dull, dirty and dangerous tasks in applications such as
search & rescue or environmental monitoring. We address gas
source localization and especially the problem of minimizing
exploration time of the robot, which is a key issue due to
energy constraints. We propose an active search approach for
robots equipped with MOX gas sensors and an anemometer,
given an occupancy map. Events of rapid change in the MOX
sensor signal (“bouts”) are used to estimate the distance to a
gas source. The wind direction guides a Gaussian regression,
which interpolates distance estimates. The contributions of this
paper are two-fold. First, we extend previous work on gas
source distance estimation with MOX sensors and propose a
modification to cope better with turbulent conditions. Second,
we introduce a novel active search gas source localization
algorithm and validate it in a real-world environment.

I. INTRODUCTION

Mobile Robot Olfaction (MRO) studies the combination of
mobile robots with gas sensors to solve practical problems
related to gas sensing. Among others, MRO systems per-
form gas discrimination, gas source localization (GSL), and
gas distribution mapping. GSL can be of great importance
for applications such as search and rescue missions, or
environmental monitoring. Robotic solutions are especially
favourable in dull, dirty or dangerous scenarios. When the
gas of interest is harmful to humans, for example, it is
indispensible to localize gas sources with a robot. The length
of robot missions, however, is typically considerably limited
by the available energy, both for ground and airborne robots.
The challenges in GSL thus include importantly to find
efficient navigation strategies that minimize the amount of
time required for searching for a gas source.

In this paper, we present an active search GSL algorithm
for a mobile robot, equipped with Metal-Oxide (MOX) gas
sensors and a wind sensor. The robot searches a known
environment (i.e., we assume that an occupancy map is
given) for the gas source. The approach that we introduce
estimates the gas source distance from the robot’s position
and aims to minimize it by exploiting a model of the wind
flow and how it affects the gas distribution.
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The problem of gas source localization has been studied
in the past two decades and there are several methods to
approach it. In general, plume-tracking algorithms make
use of wind flows (anemotaxis) and/or gas concentration
(chemotaxis) to find a direction for the robot to follow.
A broad group of algorithms try to mimic odor source
localization performed by insects in nature [3], [4]. In these
approaches the robots follow the gas plume in the upwind
direction by making use of both anemotaxis and chemotaxis
principles, whereas in our work we include an explicit source
distance estimation in the process. For this estimation we
draw upon recent works, which showed that the information
conveyed by MOX sensors can be used to estimate the
distance to a gas source in wind tunnel conditions [1]. Li
et al. [6], [7] approach the problem by estimating the source
location inside an area and then try to minimize this area.
Some more complex algorithms model the location of the gas
source with a probability distribution and then try to reduce
its entropy [5]. These algorithms model the source location
probabilistically, while we search the environment and build
a probabilistic model of the source distance.

The contributions of this paper are two-fold. First, we
introduce and validate a novel active search GSL approach.
Second, we extend the work on gas source distance estima-
tion, which was carried out in a wind tunnel [1]. We show
results of the source distance estimation technique presented
in [1] in real-world environments and introduce a modified
version better suited to the task.

II. PROBLEM DEFINITION AND APPROACH

We assume that the environment is known a priori and is
not subject to change during a mission. The environment is
represented as a Cartesian grid, thus obtaining a set M of N
cells of identical size: M = {x1, ..., xN}. We also assume
that only one source of gas is present in the environment.

The robot is equipped with an array of six in-situ sensors.
In order to measure wind speed and direction, the robot is
equipped with an ultrasonic anemometer.

The robot moves between the centers of the cells. After
each movement it records measurements of gas concentration
and wind information for a certain amount of time in order to
compute the source distance estimation. We define a function
f : M → IR+ to indicate the distance f(x) from a cell
x ∈ M . The function f is unknown a priori and is updated
from noisy measurements. From the measurements made in
visited areas, the robot estimates values of the function f in
unvisited areas of the environment and uses this knowledge

978-1-5090-2392-9/17/$31.00 ©2017 IEEE



Fig. 1: Bout count and amplitude for each sensor vs. distance
to the gas source at 0.1 m/s wind speed.

to decide where to navigate next in order to improve the
estimation in an efficient way. The estimation of the source
distance is thus performed online, as the robot visits the
environment. The approach proposed in this paper consists in
the repetition of the following steps: acquire sensor data from
the current position, compute the source distance estimation,
estimate f(x), and finally move the robot to the next position
selected by the search strategy. The two main modules of
our system, namely source distance estimation and search
strategy, are described in the following.

III. SOURCE DISTANCE ESTIMATION

One of the crucial steps of our approach is the detection
of the bouts of the signal, i.e., portions of the filtered signal
where the amplitude is rising. In [1], it is reported that there
is a strong correlation between the number of bouts and the
distance to the gas source: the higher the bout count, the
closer the sensor to the gas source.

To detect the bouts, a cascaded filtering approach is used
to detect fast transients in the sensor signal [1]. A low-
pass filter is first used in order to remove high-frequency
noise. This is done by applying a Gaussian convolution
with σsmooth = 0.3s. On the smoothed signal, a differential
convolution is applied to show differences between pairs of
samples and see the amplitude changes. Finally, the signal
undergoes an exponentially-weighted moving average filter
with a half life τhalf = 0.4s. The operation that yields the
filtered time series yt from the low-pass filtered zt can be
expressed by the following equation:

yt = (1− α) ∗ yt−1 + α ∗ zt (1)

where α = 1 − exp log(0.5)
τhalf∆t and ∆t is the time step in the

equation. Bouts of rising amplitude can be identified on the
differential of the filtered signal (y′t). The presence of a bout
is characterized by y′t being equal to or greater than zero.

The bout method in [1] was evaluated only inside a wind
tunnel, while we are considering open environments. The gas
plume was generated through evaporation of propanol placed
inside an open plastic container. A constant wind flow was
generated with a fan placed near the gas source. The bout
detection was tested with low wind speeds (0.1 m/s to 0.4
m/s). The propanol container was placed in between the robot
and the fan at different distances from the robot in 6 different
locations in the range from 2 to 4 meters. The sampling rate
of the sensors was set to 74 Hz and the sensing time of the
robot was 135 seconds, obtaining a gas concentration signal

Fig. 2: Influence of the wind speed and direction on the shape
of the kernel. The ellipse is rotated according to the wind
direction. The semimajor axis a is stretched in the upwind
direction and shrunk in the downwind direction according to
the wind speed. σ represents the spatial scale of the kernel.

with a total of 10, 000 samples per location for the bout
detection algorithm. Experiments were repeated 6 times.

Our experiments show that the bout count gives mixed
results in this scenario and cannot be used to reliably estimate
the distance to the gas source. In some cases it can be seen
that the bout count even increases with distance. From the
analysis of the gas concentration signal, we noted, however,
that the amplitude of the bouts tends to decrease with
distance, making it possible to estimate the source distance.
The distance is thus estimated for each sensor as the mean
value of the amplitudes of all the bouts. Our results (Fig. 1)
actually show that the average bout amplitude is a good
indicator of the distance to the gas source. In some cases,
when moving away from the source by 0.5 m the average
amplitude slightly increases. However, in most cases, the
average bout amplitude decreases when moving away from
the source for more than 1 m.

In the experiments performed in outdoor environments the
wind flow conditions were not stable, resulting in the wind
changing direction very often. Moreover, the wind speed
was much higher than in indoor environments (about 1 m/s).
Because of the high wind speed, the transients of the signal
are too short and the sensors cannot resolve them, resulting
in failure to detect the bouts. Overall, the sensors used in
our experiments were able to reliably estimate the source
distance in wind speeds up to 0.3 m/s.

IV. SEARCH STRATEGY

A. Algorithm

We model the average bout amplitude function f(x)
(which is related to the distance from the robot to the gas
source) as a Gaussian process with kernel function k :
M ×M → IR+. Since, in realistic environments, advection
dominates gas dispersal we use the upwind direction to direct
f(x) towards the gas source. This then favors exploration
in upwind directions. We include wind information using
a radial kernel, stretched according to the wind speed and
rotated according to the wind direction as in [2], see Fig. 2:

k(x, x′) = exp−
√

(x− x′)TΣ−1(x− x′) (2)

where Σ is the 2D covariance matrix of the Gaussian.
The kernel in Eq. 2 corresponds to the assumption that

positions in upwind direction have a bout amplitude similar



to the measurement point. It also expresses the exploitation
component of the exploration strategy, which leads the robot
to follow a gas plume. The bout amplitude estimation at
an unvisited location x∗ and the a posteriori variance are
computed respectively as:

f̄∗ = kT∗ [K + σ2
nI]−1y

V [f∗] = k(x∗, x∗)− kT∗ [K + σ2
nI]−1k∗

(3)

where k∗ and K are abbreviations respectively for k(x∗, X)
and k(X,X) and X is the set of visited cells.

The direction towards the next sensing position is com-
puted as a trade-off between exploration of unvisited areas
(following the variance gradient) and exploitation (following
the direction to the highest bout amplitude estimate). The
robot moves to the next position by following a direction
θ for a step size ρ. The direction θ is sampled from the
following Gaussian distribution:

p(θ) =

{
exp −(θ−θm(s))2

σ2
m

if R > τ

exp −(θ−θv(s))2

σ2
v

otherwise
(4)

where s is the iteration step, θm(s) is the direction to the
highest bout amplitude estimation, θv(s) is the direction
to the highest variance, τ is the trade-off parameter and
R ∈ [0, 1] is a random variable. At the beginning τ is set to 1.
During the first steps of the mission the trade-off favors ex-
ploration and the robot moves towards unknown areas. After
each step of the algorithm, the trade-off parameter decays
to slightly lean more towards exploitation. If exploitation
is favored, the robot follows the direction to the highest
bout amplitude estimation. When the a posteriori variance
is low enough (i.e., τ goes under a threshold), the algorithm
terminates by declaring the position where the highest bout
amplitude estimate is found as the final one.

B. Experimental results

Experiments with a Clearpath Husky A200 robot were
performed in a 22m x 4m indoor corridor.

The sensory function for Gaussian regression was derived
from the bout amplitudes of the all signals of the sensor
array. The estimation of the source distance is not always
accurate if derived from a single sensor, especially the
low resistance sensors were found to be not very reliable.
The bout amplitude from the high resistance sensors, on
the other hand, showed only small changes with distance.
Therefore, the distance was estimated using all sensors. More
specifically, for each sensing operation, the average bout
amplitude for each sensor is calculated, then the six values
are averaged together to have the final value. In this way,
the effects of the sensors are balanced in order to get a
good estimation. The occupied cells in the occupancy grid
are considered to have a bout amplitude equal to zero.

We consider an experiment successful if the robot chooses
as the final position the reachable cell nearest to where the
gas source is placed, along the wind direction (Fig. 3). From
a total of 12 complete experiments that were run, 8 were

(a) Grid map of the environment: The black cells
indicate obstacles. The green circle indicates the gas
source and the red circle the final position of the robot.

(b) The mean estimate map: The dark blue regions map
areas with low bout amplitude estimates, whereas the
light blue indicates high mean values.

Fig. 3: Results of an experiment in which the wind was
flowing towards the south-east direction.

successful in identifying the proper final position, giving our
method a 67% success rate. Reasons that could explain the
failed experiments include the high wind speeds (which lead
to bouts that cannot be resolved) and that the plane in which
the robot sampled gas concentrations was at a substantially
lower height than the gas source.

V. CONCLUSIONS

In this paper we introduced an integrated GSL and ex-
ploration approach that uses a mobile robot equipped with
MOX sensors and a wind sensor. The proposed solution
exploits the bout amplitude of the concentration signal and
drives the robot towards areas where its value is expected
to be maximized. Experimental results show that the bout
amplitude of the signal is a good estimator of the source
distance. The proposed search strategy performed with a
success rate of 67% in indoor environments, identifying
reachable areas near the gas source.

A possible improvement of the work done in this paper
would be to consider scenarios with multiple gas sources.
The robot then estimates the number of sources and the
distance to the closest one. Possible extensions would be to
study the bout amplitude response of different gases and try
to learn detection thresholds in order to declare the presence
of a gas source.
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